Why Japan’s utility firms want to pull the plug on destination restrictions for LNG supply
A hardened feature of long-term LNG contracts, the destination clause, is coming under renewed scrutiny as the quest for flexibility gathers momentum.
Current Access Level “I” – ID Only: CUID holders and approved guests only
Reports by Amar Bhardwaj, Colin McCormick & Julio Friedmann • May 04, 2021
This report represents the research and views of the author. It does not necessarily represent the views of the Center on Global Energy Policy. The piece may be subject to further revision. Contributions to SIPA for the benefit of CGEP are general use gifts, which gives the Center discretion in how it allocates these funds. More information is available at Our Partners. Rare cases of sponsored projects are clearly indicated. For a full list of financial supporters of the Center on Global Energy Policy at Columbia University SIPA, please visit our website at Our Partners. See below a list of members that are currently in CGEP’s Visionary Annual Circle.
(This list is updated periodically)
Jay Bernstein
Breakthrough Energy LLC
Occidental Petroleum Corporation
Despite growing efforts to drastically cut carbon dioxide (CO2) emissions and address climate change, energy outlooks project that the world will continue to rely on certain products that are currently carbon-intensive to produce but have limited alternatives, such as aviation fuels and concrete. Recycling CO2 into valuable chemicals, fuels, and materials has emerged as an opportunity to reduce the emissions of these products. In this way, CO2 recycling is a potential cornerstone of a circular carbon economy that can support a net-zero future. However, CO2 recycling processes have largely remained costly and difficult to deploy, underscoring the need for supportive policies informed by analysis of the current state and future challenges of CO2 recycling.
This report, part of the Carbon Management Research Initiative at Columbia University’s Center on Global Policy, examines 19 CO2 recycling pathways to understand the opportunities and the technical and economic limits of CO2 recycling products gaining market entry and reaching global scale. The pathways studied consume renewable (low-carbon) electricity and use chemical feedstocks derived from electrochemical pathways powered by renewable energy. Across these CO2 recycling pathways, the authors evaluated current globally representative production costs, sensitivities to cost drivers, carbon abatement potential, critical infrastructure and feedstock needs, and the effect of subsidies. Based on this analysis, the paper concludes with targeted policy recommendations to support CO2 recycling innovation and deployment.
Key findings of the analysis include the following:
Based on these findings, the authors recommend the following set of policy actions:
Rather than drill, baby, drill, it should be build, baby, build.
This report captures diverse perspectives and offers a comprehensive look at the challenges and pathways toward a sustainable energy future.
When the Inflation Reduction Act (IRA) was passed in August 2022, it triggered unprecedented enthusiasm among potential hydrogen suppliers.[1] More than two years later, progress on final investment...
Full report
Reports by Amar Bhardwaj, Colin McCormick & Julio Friedmann • May 04, 2021