Biden administration makes late bid to curb LNG exports with long-awaited report
The Department of Energy began the report earlier this year as the Biden administration sought to pause new approvals for LNG permits.
Current Access Level “I” – ID Only: CUID holders and approved guests only. Building Access: Normal building operating hours with exceptions. Read more about the campus status level system and campus access information. See the latest updates to the community regarding campus planning.
Reports by Julio Friedmann, Zhiyuan Fan, Zachary Byrum + 3 more • October 19, 2020
This report represents the research and views of the author. It does not necessarily represent the views of the Center on Global Energy Policy. The piece may be subject to further revision. Contributions to SIPA for the benefit of CGEP are general use gifts, which gives the Center discretion in how it allocates these funds. More information is available at Our Partners. Rare cases of sponsored projects are clearly indicated. For a full list of financial supporters of the Center on Global Energy Policy at Columbia University SIPA, please visit our website at Our Partners. See below a list of members that are currently in CGEP’s Visionary Annual Circle.
(This list is updated periodically)
Jay Bernstein
Breakthrough Energy LLC
Occidental Petroleum Corporation
New policies are needed to achieve the net-zero emissions required to address climate change. To succeed, these policies must lead directly to swift and profound abatement of greenhouse gas (GHG) emissions. Policies that appear effective on the surface too often have little real impact or are costly compared to alternatives. Governments, investors, and decision makers require better tools focused on understanding the real emissions impacts and costs of policies and other measures in order to design the most effective policies required to create a net-zero world.
This paper, from the Carbon Management Research Initiative at Columbia University’s Center on Global Energy Policy, puts forward a levelized cost of carbon abatement, LCCA, an improved methodology for comparing technologies and policies based on the cost of carbon abatement. LCCA measures how much CO2 can be reduced by a specific investment or policy, taking into account relevant factors related to geography and specific asset. It calculates how much an investment or policy costs on the basis of dollars per ton of emissions reduced. Previous marginal or levelized cost methodologies that assess carbon reduction options often failed to consider the specific contexts that determine the real, all-in costs of a policy and the real, all-in impacts on emissions. These costs and impacts can vary depending on the contexts and details of geography, existing infrastructure, timing, and other factors. LCCA attempts to improve understanding of the real climate costs and benefits by including specific and local CO2 reductions in all estimations and consistently applying standard financial metrics that more accurately represent and compare costs.
Investors and policy makers interested in climate, energy, and decarbonization must balance many competing options. The scenarios and analyses presented in this report can provide a foundation for wider analytical applications, and can help focus investments in innovation for hard-to-abate sectors, determine essential infrastructure required to facilitate market uptake, and estimate the value of grants in deployment. If the LCCA is not estimated, decision makers will not know the value of their policies and investments in terms of achieving greenhouse gas reductions and their carbon goals or the opportunity costs of taking one path over another. Finally, although carbon abatement costs are only one consideration of many in crafting climate policy (e.g., jobs, trade, domestic security), LCCA analysis will deploy efficient and effective approaches of GHG reduction and help avoid waste.
This paper uses four scenarios to illustrate the discipline and value of LCCA analysis: first, the $/ton cost of using new solar power (utility or rooftop) to displace power-sector emissions in one market (California); second, the $/ton costs of new rooftop solar generation in several states with different solar resources, grid mixes, and policy environments; third, the $/ton cost of various technology options to decarbonize a range of primary iron and steel production methods; and fourth, the $/ton cost associated with sustainable aviation fuels and direct air capture and storage of CO2.
The analysis provides insight into (a) the highest value for carbon reduction, (b) the relative discrete costs and benefits for decarbonization options, and (c) the potential shortfalls in policy or portfolio goals. In this context, the LCCA estimates for even simple cases can prove complicated depending on how emissions reductions are achieved. For example, our first scenario finds the costs of reducing emissions by replacing existing power generation in California with solar PV range from $60/ton (utility solar PV displacing natural gas power generation) to $300/ton (rooftop solar replacing a grid-average mix of generation) to more than $10,000/ton (any solar replacement of nuclear or hydropower). These large ranges are contingent on policy, investment, and/or technical decisions. Other key examples include:
The methodology put forward is suited to both static and dynamic aspects of CO2 reduction (e.g., learning by doing, marginal supply curves), can assess technology options (e.g., replacing existing power generation) and policy options (e.g., tax credits), and is keyed to tons reduced relative to a base case. It should be considered one specific index or metric, and ultimately should be one of many considerations in designing policy or investments.
Full report
Reports by Julio Friedmann, Zhiyuan Fan, Zachary Byrum + 3 more • October 19, 2020