This website uses cookies as well as similar tools and technologies to understand visitors’ experiences. By continuing to use this website, you consent to Columbia University’s usage of cookies and similar technologies, in accordance with the Columbia University Website Cookie Notice.
What is the goal of the critical minerals executive order signed by President Trump on March 20, 2025? The order[1] aims to significantly increase domestic production of critical minerals...
Across America, energy policy is often driven by short-term politics over long-term planning. Despite record-breaking U.S. oil production in recent years, partisan battles continue over fossil fuels and...
Please join the Women in Energy initiative at the Center on Global Energy Policy at Columbia SIPA for a student roundtable lunch featuring Claire Steichen, Founder of Clear Strategy Coaching.For many...
Event
• Center on Global Energy Policy
1255 Amsterdam Ave, New York, NY 10027
About Us
We are the premier hub and policy institution for global energy thought leadership. Energy impacts every element of our lives, and our trusted fact-based research informs the decisions that affect all of us.
This report represents the research and views of the author. It does not necessarily represent the views of the Center on Global Energy Policy. The piece may be subject to further revision. Contributions to SIPA for the benefit of CGEP are general use gifts, which gives the Center discretion in how it allocates these funds. More information is available at Our Partners. Rare cases of sponsored projects are clearly indicated.For a full list of financial supporters of the Center on Global Energy Policy at Columbia University SIPA, please visit our website at Our Partners. See below a list of members that are currently in CGEP’s Visionary Annual Circle.
CGEP’s Visionary Annual Circle
(This list is updated periodically)
Jay Bernstein
Breakthrough Energy LLC
Occidental Petroleum Corporation
Executive Summary
Putting a price on carbon dioxide (CO2) emissions can help governments reduce them rapidly and in a cost-effective manner. While 10 carbon tax bills have been proposed in the 116th US Congress, carbon prices alone are not enough to reach net-zero emissions by midcentury. Additional policies are needed to complement an economy-wide carbon tax and further cut CO2 from the US energy system.
This study aims to provide a better understanding of such policy combinations. It projects the energy CO2 emissions impacts of two carbon taxes, starting in 2021, that span the rates in the carbon tax bills in Congress. The “low” tax scenario starts at $30 per ton in 2021 and rises at 5 percent plus inflation per year, reaching $44 by 2030, while the “high” carbon tax starts at $15 per ton and rises $15 per year, reaching $150 by 2030. The paper then describes the barriers inhibiting emissions reductions beyond those achieved by the carbon taxes alone for each major sector: electricity, transportation, buildings, and industry. Finally, it explores the energy system changes needed to overcome those barriers and the policy interventions that could deliver those changes. For certain key energy system changes, it provides quantitative estimates of emissions reductions incremental to the two carbon taxes.
This paper is part of a joint effort by Columbia University’s Center on Global Energy Policy (CGEP) and Rhodium Group to help policy makers and other stakeholders understand the important decisions associated with the design of carbon pricing policies and the implications of these decisions. The paper finds the emissions impacts of the low and high carbon taxes alone lead to economy-wide energy CO2 emissions reductions by 2030 of 33 percent and 41 percent, respectively, below 2005 levels. A carbon tax combined with policy actions that support comprehensive, ambitious energy system changes could lead to emissions reductions in the range of 40 to 45 percent, arguably consistent with US midcentury deep decarbonization goals for the energy system.
In the 2020s, the bulk of these emissions reductions are likely to occur in the power sector, even under a broad decarbonization strategy, due to the significant barriers to large near-term emissions reductions in the transportation, buildings, and industrial sectors.
In addition, the paper finds:
Barriers to decarbonization prevent carbon prices from driving further reductions. A carbon price works best when producers and consumers can see and respond to price signals and can easily shift to low-carbon alternatives. Three cross-cutting barriers to additional emissions reductions alongside a carbon tax are: (1) consumer behavior and preferences, (2) lack of substitutes, and (3) slow stock turnover.
Encouraging nationwide energy system changes can lead to additional CO2 emissions reductions beyond the carbon tax in every major sector. Among the most effective energy system changes at producing emissions reductions by 2030 are limits on new natural gas power plants and improved energy efficiency in buildings. Among the least effective is additional support to prevent the retirement of existing nuclear plants, because a carbon tax alone is sufficient to keep the vast majority of plants competitive through at least 2030.
The carbon tax rates influence the effectiveness of additional energy system changes. For changes that focus on electrification (e.g., electric vehicle deployments), additional emissions reductions are larger with higher carbon tax rates due to the lower carbon electricity system. For other energy system changes (e.g., limiting new natural gas power plants), emissions reductions are smaller with higher carbon tax rates because the carbon tax by itself achieves some of the same outcomes.
The emissions impacts of additional energy system changes are small relative to the impacts of the carbon tax alone. In combination with market forces and policies already in place, the carbon taxes cause annual emissions to fall 1,223 to 1,707 million metric tons (MMT) between 2019 and 2030. The range of energy system changes explored in this analysis cause emissions to fall an additional 0 to 195 MMT. The small impacts are especially notable outside of the power sector, where carbon taxes and market forces also fail to drive significant emissions reductions by 2030.
For certain energy system changes, though, the small emissions reductions by 2030 mask large, longer-term changes that could significantly help the United States achieve its midcentury decarbonization goals. For example, the analysis shows that a mandate for zero-emissions light duty vehicles of 50–70 percent of new sales by 2030 would only reduce emissions by 36–79 MMT in 2030, largely because only 2 percent of the vehicles on the road turn over each year. However, such mandates are consistent with pathways to achieve 100 percent zero-emissions vehicle sales by around 2040.
The Just Energy Transition Partnership (JETP) framework[1] was designed to help accelerate the energy transition in emerging market and developing economies (EMDEs) while embedding socioeconomic[2] considerations into its planning and implementation.
Commentary
by Gautam Jain & Ganis Bustami• March 03, 2025
This analysis provides an overview of changes in production and economic outcomes in US oil and gas regions, grouping them by recent trends and examining their impact on local economies.