New Trump administration greenlights its first Louisiana LNG plant
The agency that granted the permit found in 2024 that approving additional LNG exports could raise natural gas prices for U.S. consumers.
For the latest updates on access to the Morningside campus, visit the Public Safety website. Read more.
Reports by Amar Bhardwaj, Colin McCormick & Julio Friedmann • May 04, 2021
This report represents the research and views of the author. It does not necessarily represent the views of the Center on Global Energy Policy. The piece may be subject to further revision. Contributions to SIPA for the benefit of CGEP are general use gifts, which gives the Center discretion in how it allocates these funds. More information is available at Our Partners. Rare cases of sponsored projects are clearly indicated. For a full list of financial supporters of the Center on Global Energy Policy at Columbia University SIPA, please visit our website at Our Partners. See below a list of members that are currently in CGEP’s Visionary Annual Circle.
(This list is updated periodically)
Jay Bernstein
Breakthrough Energy LLC
Occidental Petroleum Corporation
Despite growing efforts to drastically cut carbon dioxide (CO2) emissions and address climate change, energy outlooks project that the world will continue to rely on certain products that are currently carbon-intensive to produce but have limited alternatives, such as aviation fuels and concrete. Recycling CO2 into valuable chemicals, fuels, and materials has emerged as an opportunity to reduce the emissions of these products. In this way, CO2 recycling is a potential cornerstone of a circular carbon economy that can support a net-zero future. However, CO2 recycling processes have largely remained costly and difficult to deploy, underscoring the need for supportive policies informed by analysis of the current state and future challenges of CO2 recycling.
This report, part of the Carbon Management Research Initiative at Columbia University’s Center on Global Policy, examines 19 CO2 recycling pathways to understand the opportunities and the technical and economic limits of CO2 recycling products gaining market entry and reaching global scale. The pathways studied consume renewable (low-carbon) electricity and use chemical feedstocks derived from electrochemical pathways powered by renewable energy. Across these CO2 recycling pathways, the authors evaluated current globally representative production costs, sensitivities to cost drivers, carbon abatement potential, critical infrastructure and feedstock needs, and the effect of subsidies. Based on this analysis, the paper concludes with targeted policy recommendations to support CO2 recycling innovation and deployment.
Key findings of the analysis include the following:
Based on these findings, the authors recommend the following set of policy actions:
President Donald Trump has made energy a clear focus for his second term in the White House. Having campaigned on an “America First” platform that highlighted domestic fossil-fuel growth, the reversal of climate policies and clean energy incentives advanced by the Biden administration, and substantial tariffs on key US trading partners, he declared an “energy emergency” on his first day in office.
Can U.S. gas exports throw a lifeline to Europe without raising prices at home?
The incoming Trump administration should embrace a diverse energy mix, including renewables, for the sake of economic and national security.
Full report
Reports by Amar Bhardwaj, Colin McCormick & Julio Friedmann • May 04, 2021