Meeting China’s Climate Goals

Valerie J. Karplus
Seminar
Center on Global Energy Policy, Columbia University

September 21, 2015
China-U.S. climate agreement (Nov. 2014) and China’s INDC (June 2015).

China is shifting to a new normal, with slower, more sustainable growth.

Air quality remains a major problem, affecting human health and the economy.
How to balance?

Human Development

Industrial Development & Resource Needs

Global Climate Change

Local Pollution

www.china.org.cn

www.flickr.com

www.wikimedia.org

www.globalchange.mit.edu
China’s energy system: A snapshot

By primary energy type

By end-use sector

Coal use by sector

Role in Asian energy demand

Peak coal?

Million tons of coal consumption - China total

Source: China Energy Statistical Yearbooks.
Electricity demand growth is slowing

China's electricity consumption - TWh

12%/yr 3.8%/yr

Source: China Energy Statistical Yearbooks.
Objective:

Assess future energy use and CO₂ emissions under new assumptions...

- Emissions trading (carbon pricing)
- New efforts to control coal use
- Non-fossil energy subsidies (FIT)
- Energy price reform
- “New normal” economic growth

Used CECP China-in-Global Energy Model (C-GEM).

Source: Zhang, Karplus et al., 2015.
For this analysis we use the China-in-Global Energy Model: C-GEM

A new model for assessing the domestic and global impact of energy and climate policy in China

- 18 sectors from GTAP database & China national input-output and energy balance tables.
- Detailed representation of energy-intensive sectors.
- 19 countries and regions

Basic model structure:

Primary Factors – Capital, Labor, Resources

Income

Goods and Services

Expenditures

Key features:

- Detailed representation of the energy-intensive sectors (iron & steel, non-ferrous metals, non-metallic minerals, chemicals & rubber, and other ferrous manufactured products).
- China data: combined domestic economic and energy data source for China.
The size of China’s economy (GDP) is projected to grow around six times in real terms between 2010 and 2050.
Three policy scenarios analyzed in the *Outlook*

<table>
<thead>
<tr>
<th>Measures</th>
<th>No Policy</th>
<th>Continued Effort</th>
<th>Accelerated Effort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions trading system (reduce carbon intensity)</td>
<td>Carbon price required to achieve CI reduction (~3%/year, $30/ton in 2035 and $73/ton in 2050)</td>
<td>Carbon price rises to achieve CI reduction (~4%/year, $55/ton in 2035 and $126/ton in 2050).</td>
<td></td>
</tr>
<tr>
<td>Fossil resource tax</td>
<td>Crude oil/natural gas: 5% Coal: 8 CNY/ton (~$1.2/ton)</td>
<td></td>
<td>Crude oil & Nature gas: 8% Coal: 10%</td>
</tr>
<tr>
<td>Feed-in tariff for wind, solar and biomass electricity</td>
<td>FIT at current rates (wind: 0.51–0.61 CNY/KWh, solar: 0.90–1.00 CNY/KWh, biomass: 0.75 CNY/KWh)</td>
<td>FIT at current rates, scaling costs are lower than Continued Effort assumption</td>
<td></td>
</tr>
<tr>
<td>Hydro resource development</td>
<td>Achieve the existing target of 350 GW in 2020 and slowly increase to its economic potential of 400 GW by 2050.</td>
<td></td>
<td>Same as the Continued Effort assumption.</td>
</tr>
<tr>
<td>Nuclear power development policy</td>
<td>1) 40 GW in 2015 and 58 GW in 2020. 2) Assumes site availability of 160 GW.</td>
<td></td>
<td>1) Same as the Continued Effort assumption. 2) Assumes site availability of 400 GW.</td>
</tr>
</tbody>
</table>

Continued Effort and *Accelerated Effort* scenarios represent alternative levels of policy stringency.
The **Accelerated Effort** scenario shifts away from coal toward cleaner low carbon energy sources.
Peak Years and Amounts

<table>
<thead>
<tr>
<th>Quantity</th>
<th>No Policy</th>
<th>Current Policy</th>
<th>Accelerated Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peak Year</td>
<td>Amount</td>
<td>Peak Year</td>
</tr>
<tr>
<td>Coal consumption</td>
<td>>2050</td>
<td>>189 EJ</td>
<td>2030</td>
</tr>
<tr>
<td>Energy-related CO$_2$ emissions</td>
<td>>2050</td>
<td>>21 bmt</td>
<td>2040</td>
</tr>
</tbody>
</table>
Major uncertainties

- Economic growth – slower growth will lead to an earlier peak.
- Cost and availability of low carbon technology.
- Policy decision to develop coal-to-gas and coal-to-liquids technology.
- Natural gas price – depends on regional integration of natural gas markets.
- Energy intensity of rising household consumption.
Thank you
谢谢!