For the latest updates on access to the Morningside campus, visit the Public Safety website. Read more.
This website uses cookies as well as similar tools and technologies to understand visitors’ experiences. By continuing to use this website, you consent to Columbia University’s usage of cookies and similar technologies, in accordance with the Columbia University Website Cookie Notice.
On February 4, the Trump administration imposed an additional 10 percent tariff on all Chinese imports into the United States. China’s Ministry of Commerce responded by announcing new tariffs on US imports,...
Over the past month, the Trump administration has declared a national energy emergency, launched an ambitious agenda aimed at transforming the nation's energy landscape, and pulled back from...
This workshop will be conducted in two parts: Part one on February 12 from 1:00 PM to 2:00 PM EST, and Part two on February 13 from 2:00...
Event
• Center on Global Energy Policy
About Us
We are the premier hub and policy institution for global energy thought leadership. Energy impacts every element of our lives, and our trusted fact-based research informs the decisions that affect all of us.
The European Union (EU-27) is a globally significant trading bloc focused on reducing greenhouse gas emissions, including by seeking to impose its own environmental standards extra-territorially on its trading partners.[1] The United States, in particular, has an interest in being a supplier of reduced-emission fuels to the EU, and the two trade partners have every incentive to work together on their greenhouse gas emissions. An essential step toward working together is to have a common understanding of the science and engineering that undergirds rational policymaking.
As the EU-27 writes laws favoring the import of fuels with low greenhouse gas footprints, it may seem puzzling to some Americans to see two different sets of rules emerging across the Atlantic to regulate trade of goods embodying the two most important greenhouse gases: carbon dioxide and methane. The use of two different rule books can be explained by the fact that various greenhouse gases cannot be compared using one-dimensional metrics such as global warming potential (GWP) or carbon dioxide equivalent (CO2-eq). Moreover, while it is relatively straightforward to estimate the embodied content of carbon dioxide, it is quite difficult to determine the corresponding quantity of methane. Therefore, their border adjustments must be constructed on different principles.
This article describes the EU-27’s distinctly different rules for controlling imports of embodied carbon dioxide and embodied methane.
Greenhouse Gas Primer
Global average surface temperatures are higher now than they have been for at least the last 2,000 years,[2] and are continuing to increase at an accelerating rate.[3] Two greenhouse gases, carbon dioxide and methane, with very different characteristics, are primarily responsible for anthropogenic climate change.
Their properties are summarized here:
Radiative efficiency is a measure of the effectiveness of a chemical compound at warming the earth.[4] About 100 times more anthropogenic carbon dioxide than anthropogenic methane is emitted each year, but a ton of carbon dioxide has only about 1/100 of the warming effectiveness of a ton of methane. Hence the prompt warming effects of the two gases are comparable at current emission rates. However, methane disappears from the atmosphere in a few decades while carbon dioxide lingers for hundreds of years. Therefore, cutting methane emissions gives prompt reductions in the rate of global warming, but carbon dioxide continues to accumulate in the atmosphere and is, therefore, more dangerous in the long run. Judging them on the same scale (GWP or CO2-eq) is misleading.
Carbon dioxide and methane also come from different parts of the fossil fuel supply chain.
Methane is mostly released during production (“upstream”) and transport and storage (“midstream”). These emissions are intermittent and vary widely in magnitude and duration. Therefore, they cannot be estimated accurately. The vast number of episodically emitting sites pose challenges to measurement.
Carbon dioxide emissions mostly come from final use (combustion). These are easy to estimate accurately because both the masses of fuels consumed[5] and the carbon dioxide emission coefficients for various fuel-consuming processes[6] are well known.
Therefore, these gases are logically regulated by different means.
Rationales for the European Union Fossil Fuel Regulations
Carbon Dioxide
Within the European Union, the EU Emissions Trading System (EU-ETS),[7] alongside ETS 2,[8] is the mechanism controlling carbon dioxide emitted by end users of fossil fuels. The EU-27 will control the embodied carbon dioxide content of imported goods with the Carbon Border Adjustment Mechanism (CBAM),[9] with the levied carbon tax to be paid by purchasing certificates at the EU-ETS market rate for carbon. This obligation can only be offset by payment of an equivalent tax in the exporting nation, which poses a problem for exporters in nations that do not tax carbon emissions, such as the United States. US Trade Representative Katherine Tai, among others, has argued that “regulatory and other non-price mechanisms for reducing carbon emissions” should satisfy, at least in part, the CBAM obligation.[10] However, these arguments appear to have been ineffective.
From 2023 to 2030 the effects of CBAM are restricted to a limited range of materials and products.[11] From 2030 onward, CBAM will apply to all sectors covered by EU-ETS. These will include crude oil and refined petroleum products, but not pipeline natural gas or liquefied natural gas (LNG), except LNG used as marine fuel.
Note that EU-ETS, and therefore CBAM, covers only carbon dioxide, nitrous oxide, and perfluorocarbons, i.e. “emissions that can be measured, reported and verified with a high level of accuracy.”[12] Methane emissions are excluded from the EU-27’s current CBAM policy.
Methane
As noted, the European Union treats methane differently than other greenhouse gases, in part because it is difficult to quantify. Many methane emissions, even the largest ones, are intermittent and of highly variable duration. Gas leaks vary over many orders of magnitude, and once diffused in the atmosphere leave no local evidence of an emission.
The Environmental Protection Agency first attempted to estimate methane emissions from US petroleum and natural gas systems in the 1990s. With about a million oil and gas production and processing sites, and potential emissions sources being large multiples of that number, surveillance was deemed impractical. Emission factor (spreadsheet) methods requiring no measurements of operating equipment were developed. Now almost all countries that report greenhouse gas emissions to the United Nations Framework Convention on Climate Change use these methods, although their accuracy has been widely disputed.[13] Elsewhere, the author has presented a comparison of implementations of the emission factor method by the Russian Federation and the United States detailing the defects of this methodology.[14]
Over the last decade, a variety of emission monitoring systems have been developed and deployed, including effective and efficient methods such as sensors on moving vehicles, drones, helicopters, fixed-wing aircraft, and earth-orbiting satellites. These systems have revealed where, how, and why petroleum and natural gas systems lose methane to the atmosphere. A summary of these findings is available[15] and, as a result of many such studies, there has been a flurry of regulatory efforts on both sides of the Atlantic Ocean.
Implementing EU’s Methane Reduction Rules
Notably, the European Union is preparing the final text of a methane reduction law with extra-territorial reach.[16] This law provides (1) upon enactment (estimated to be early summer 2024) the European Commission will begin collection of methane emissions data, primarily at the scale of producing geological basins; (2) in 2027, reports on importer monitoring, measurement, reporting, and verification (MMRV) will be required for new import contracts; and (3) by 2030, all contracts must report MMRV efforts equivalent to EU requirements and must meet a methane intensity to be set by the European Commission in a future act. An MMRV best practices initiative designed to regularize reporting across nations is a positive step toward implementing these rules.[17]
Notes
[1] A. Bradford, The Brussels Effect: How the European Union Rules the World (Oxford University Press, 2020).
[2] IPCC, Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, V. Masson-Delmotte, et al., eds. (Cambridge University Press, 2023). Figure SPM.1. https://doi.org/10.1017/9781009157896.
[16] Council of the European Union, “Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on methane emissions reduction in the energy sector and amending Regulation (EU) 2019/942 – Analysis of the final compromise text with a view to agreement, 15927/23,” Brussels, December 7, 2023, https://data.consilium.europa.eu/doc/document/ST-15927-2023-INIT/en/pdf.
[17] US Department of Energy, “Public Announcement of International Working Group to Establish a Greenhouse Gas Supply Chain Emissions Measurement, Monitoring, Reporting, and Verification (MMRV) Framework for Providing Comparable and Reliable Information to Natural Gas Market Participants,” November 15, 2023, https://www.energy.gov/sites/default/files/2023-11/MMRVFramework_PublicAnnouncement_15Nov2023.pdf.
President Donald Trump has made energy a clear focus for his second term in the White House. Having campaigned on an “America First” platform that highlighted domestic fossil-fuel growth, the reversal of climate policies and clean energy incentives advanced by the Biden administration, and substantial tariffs on key US trading partners, he declared an “energy emergency” on his first day in office.
The world has committed to transitioning away from fossil fuels to avoid the most severe threats of climate change.[1] Communities across the United States rely on fossil fuel...
When the Inflation Reduction Act (IRA) was passed in August 2022, it triggered unprecedented enthusiasm among potential hydrogen suppliers.[1] More than two years later, progress on final investment...
Amid plans to nearly double its steel production capacity by 2030 to serve its growing infrastructure needs, the world’s No. 2 steel producer India[1] has released plans to...